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Questionnaire
1. Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?

When performing data augmentation on images we first resize to a larger image so that when we apply data augmentation
technique we would not lose pixels in the image, i.e. certain areas of the image. For example, if we would rotate the image
the edges would be black and hence providing no information for our learner. However, if we perform the same rotation on
a larger image and then resize to a smaller image to be feed into a neural network we are not losing pixel information.

2. If you are not familiar with regular expressions, find a regular expression tutorial and some problem sets, and
complete them. Have a look on the book’s website for suggestions.

Some interesting references for regular expressions:

RegexOne
RegexBuddy
Python re
Regular Expressions in Python: A Complete Guide � Real Python

3. What are the two ways in which data is most commonly provided for most deep learning datasets?

Data is usually presented in the following two ways:

individual files in form of text documents, images, etc. The filenames or the folder names in which the files are saved
usually depict the target label
data tables (e.g. in form of csv files) in form of rows and columns, where rows generally depict one sample and the
columns provide information about that sample, such as sample ID, metadata, etc.

4. Look up the documentation for L  and try using a few of the new methods that it adds.

Class L  represents an enhanced version of the Python list type. For most of the functions and methods in fastai we can
use the L  class. General description for class L  can be found here. Some properties are:

it truncates the list if there are more than 10 elements
in addition to the list object it also returns number of elements in the underlying list object
uses indexing as an array in Python

For the source code use ??L  in Python with full documentation in fastcore/foundations.

Few methods:

create a list using range :

apply operations

# create a list using range 
t = L(range(12)); t 
>>> (#12) [0,1,2,3,4,5,6,7,8,9...] 

t = L() 

https://regexone.com/
https://www.regexbuddy.com/
https://docs.python.org/3/library/re.html
https://realpython.com/regex-python/
https://fastcore.fast.ai/tour.html#l
https://fastcore.fast.ai/foundation.html#l


apply methods

5. Look up the documentation for the Python pathlib  module and try using a few methods of the Path  class.

Documentation for the pathlib  module - link.

# Add 1 to t 
t.append(1) 
>>> (#1) [1] 

# Add [2,3] to existing t 
t += [3,2] 
>>> (#3) [1,3,2] 

# Add another list 
t = t+[4]; t 
>>> (#4) [1,3,2,4] 

# Add 5 to the beginning of the list 
t = 5 + t; t 
>>> (#5) [5,1,3,2,4] 

# Use map to apply a function to each element of L 
t = t.map(operator.neg); t 
(#5) [-5,-1,-3,-2,-4] 

# Filter values 
t = L(range(12)) 
t.filter(lambda i:i<2) 
>>> (#2) [0,1] 

# Filter but return indices of matching values 
t = L([1,5,4,6,7,8,3,2,1]) 
t.argwhere(lambda i:i<3) 
>>> (#3) [0,7,8] 

# Concatenate elements 
t = L([0,1,2,3],L(5,6),4,L(3,2)).concat(); t 
(#9) [0,1,2,3,5,6,4,3,2] 

# Sort elements 
t.sorted() 
>>> (#9) [0,1,2,2,3,3,4,5,6] 

# Get unique elements 
t.unique() 
>>> (#7) [0,1,2,3,4,5,6] 

from pathlib import Path 

# Define the path - Colab connected to Google drive 
p = Path('/content/sample_data/') 

# get current working directory 
Path.cwd() 
>>> Path('/content/sample_data')  

# Test is it a directory 
p.is_dir() 
>>> True 

https://docs.python.org/3/library/pathlib.html


6. Give two examples of ways that image transformations can degrade the quality of the data.

image rotation changes the corners of an image into black non-informative pixels
interpolation of these spaces create some pixels but not of the same quality as the original image

zooming operations also downgrade the image requiring interpolation

7. What method does fastai provide to view the data in a DataLoaders?

With one_batch  method we can view the real data from the DataLoaders . It returns the dependent and independent
variables. We can use it as follows:

where dls  is a dataloader object.

8. What method does fastai provide to help you debug a DataBlock?

To ensure that the dataset has been constructed correctly and does not throw any errors we can use the summary
method, which creates a batch from the source we specified and provides all the details of the processes that have been
applied on the data. If any of the processes fail it will show where the error happens as well as some insight into how to
potentially fix it.

We can use it as follows:

9. Should you hold off on training a model until you have thoroughly cleaned your data?

Once we have the initial dataloader correctly defined we should train a baseline model. This provides us with the
benchmark results in its simple form and we an ensure that the complete pipeline of model training is working correctly. It
is much easier to correct for mistakes if the complete process is on a smaller scale. Also it is much easier to understand it.
Furthermore, having a simple baseline we can easily iterate our training process and see its impacts on the model loss and
the chosen metric.

10. What are the two pieces that are combined into cross-entropy loss in PyTorch?

Cross-entropy loss is comprised of the softmax and the negative log likelihood.

11. What are the two properties of activations that softmax ensures? Why is this important?

Properties of the softmax activation function:

all activations are in the range (0,1)
we get probabilities for each target class
exp()  ensures that we always have a positive result

the sum of all activations is equal to 1
dividing by the sum of all exp() 's gives us the values which will sum to one since it gives the proportional value
to the total.

# get the file name extensions in the directory 
s = [i.suffix for i in p.iterdir() if i.is_file()]; s 
>>> ['.json', '.md', '.csv', '.csv', '.csv', '.csv'] 

# Using L class get the unique file extensions 
L(s).unique() 
>>> (#3) ['.json','.md','.csv'] 

x,y = dls.one_batch() 

pets = DataBlock(...) 
pets.summary(path/'images') 



Note: exp()  amplifies the values so we will get a bigger range between results which are initially closer together - the
model is more/less sure about the final class

12. When might you want your activations to not have these two properties? 
Being more or less sure about the target class is good if we know the true class label, like in training. However, in
inference, when we are testing our model, we want the information where the model is unsure about the target class.

13. Calculate the exp  and softmax  columns of Figure 5�3 yourself (i.e., in a spreadsheet, with a calculator, or in a
notebook).

The figure 5�3 is done for the pet breeds example in chapter 5. The code is the following given that we have defined the
dls  dataloader:

Create initial table with class names and predictions for each class for a given image:

Compute the exponential and the softmax for each prediction:

Sort the values for the softmax (descending order) and print the first 5 rows of the table

# Get one batch 
Xs,ys = dls.one_batch() 

# Compute predictions for the batch 
preds_Xs,_ = learn.get_preds(dl=[(Xs,ys)]) 

# Choose one image and print the target label 
preds = preds_Xs[0] 
y = y[0]; y 
>>> tensor(15) 

# Get the names of the classes from the dataloader 
tclass = dls.vocab 

# Create a table 
df = pd.DataFrame({'class_name': tclass, 
                   'output': preds}) 

# Exponential 
df['exp'] = np.exp(df['output'])

# Softmax 
sum_exp = df['exp'].sum() 
df['softmax'] = df['exp']/sum_exp 

df.sort_values('softmax', ascending=False) 
>>> 
                   class_name        output       exp   softmax 
15                      beagle  9.994148e-01  2.716692  0.070167 
14                basset_hound  3.874889e-04  1.000388  0.025838 
12            american_bulldog  5.565286e-05  1.000056  0.025830 
13   american_pit_bull_terrier  5.316383e-05  1.000053  0.025830 
18      english_cocker_spaniel  1.861128e-05  1.000019  0.025829 
34  staffordshire_bull_terrier  1.803941e-05  1.000018  0.025829 
30               saint_bernard  1.097619e-05  1.000011  0.025829 
1                       Bengal  7.443317e-06  1.000007  0.025828 
28                  pomeranian  6.410583e-06  1.000006  0.025828 
33                   shiba_inu  3.331156e-06  1.000003  0.025828 
20          german_shorthaired  3.163265e-06  1.000003  0.025828 
36           yorkshire_terrier  3.128756e-06  1.000003  0.025828 



as we can see the model made the correct prediction that the pet breed is a beagle �15�. To see the image of the pet use:

confirming that it does look like a beagle.

14. Why can’t we use torch.where  to create a loss function for datasets where our label can have more than two
categories? 
In case of having more than 2 target categories we need a loss function to tell us which out of all categories is most likely
to be true given our input data. In order to do this we need the predictions for each class to be proportional to the output
of all classes so that they are evenly compared. Since torch.where  does not provide this for more than 2 classes we can
not use it.

15. What is the value of log(–2)? Why? 
Not defined since the  is defined on .

16. What are two good rules of thumb for picking a learning rate from the learning rate finder? 
Pick a learning rate either:

 one magnitude lower than the learning rate at the minimum loss,
because at minimum the loss is not decreasing anymore

 the last point where the loss was clearly decreasing

17. What two steps does the fine_tune  method do? 
The fine_tune  method does the following two things:

 train the randomly added layers for one epoch, with all other layers frozen
 unfreezes all the layers and trains them for the number of epochs requested

18. In Jupyter Notebook, how do you get the source code for a method or function? 
By typing and running ??method_name  in a Jupyter Notebook cell.

16                       boxer  2.815527e-06  1.000003  0.025828 
35             wheaten_terrier  2.218476e-06  1.000002  0.025828 
17                   chihuahua  1.961671e-06  1.000002  0.025828 
19              english_setter  1.709348e-06  1.000002  0.025828 
26          miniature_pinscher  1.442625e-06  1.000002  0.025828 
2                       Birman  1.307681e-06  1.000001  0.025828 
11                      Sphynx  1.215433e-06  1.000001  0.025828 
4            British_Shorthair  6.793929e-07  1.000001  0.025828 
0                   Abyssinian  6.745271e-07  1.000001  0.025828 
9                 Russian_Blue  6.645611e-07  1.000001  0.025828 
21              great_pyrenees  3.223752e-07  1.000000  0.025828 
22                    havanese  3.915477e-07  1.000000  0.025828 
23               japanese_chin  2.533390e-07  1.000000  0.025828 
31                     samoyed  3.332337e-07  1.000000  0.025828 
8                      Ragdoll  3.235540e-07  1.000000  0.025828 
10                     Siamese  2.132258e-07  1.000000  0.025828 
25                  leonberger  1.729973e-07  1.000000  0.025828 
6                   Maine_Coon  1.404158e-07  1.000000  0.025828 
27                newfoundland  1.091678e-07  1.000000  0.025828 
5                 Egyptian_Mau  1.335720e-07  1.000000  0.025828 
29                         pug  1.687634e-07  1.000000  0.025828 
32            scottish_terrier  1.585672e-07  1.000000  0.025828 
3                       Bombay  1.656887e-07  1.000000  0.025828 
24                    keeshond  1.617980e-07  1.000000  0.025828 
7                      Persian  6.237953e-08  1.000000  0.025828 

npimg = Xs[0].cpu() 
plt.imshow(np.transpose(npimg, (1, 2, 0))) 
plt.show() 

log(x) (0,+inf)



19. What are discriminative learning rates? 
Different layers in the neural network learn different features which vary in complexity, so we might not need the same
learning rate for all layers in the network. Discriminative learning rates represent this varying learning rates across the
network in the following way:

use lower learning rate for early layers
use higher learning rates for the later layers and the randomly added layers

20. How is a Python slice  object interpreted when passed as a learning rate to fastai? 
We can add slice  as follows to the training process: fit_one_cycle(lr_max=slice(1e-6, 1e-4))which would apply the
learning rate of 1e-6  to the first layer of the neural network and 1e-4  to the final layer of the neural network. The in-
between layers will have the equidistant learning rate from the given range.

21. Why is early stopping a poor choice when using 1cycle training? 
1-cycle learning starts the training with a low learning rate, which is then gradually increases as the training progresses
and finally decreases in the last section of training. If we would use early stopping in such training we would not take the
full advantage of the learning rate since it might never get to the point of using the small values.

22. What is the difference between resnet50  and resnet101? 
The difference is in the number of layers, resnet50  has 50 layers while resnet101  has 101 layers. They are both trained
on ImageNet.

23. What does to_fp16  do? 
Large architectures take a long time to train. To reduce the training time we can use lower precision such as half-precision
floating point or fp16. We can use it in fastai as follows:

learn = vision_learner(dls, resnet34, metrics=error_rate).to_fp16() 


